Abstract

The net erosion yield of CX-2002U carbon fiber composites under high-flux low-temperature hydrogen plasma is investigated using a linear plasma device. It is found that the net erosion yield decreases rapidly first, and then tends to saturate with the increase of hydrogen–plasma flux. When the temperature of the sample eroded by hydrogen plasma is above 300 °C, the hybridization of electrons outside the carbon atom would change. Then the carbon atoms combine with hydrogen atoms to form massive spherical nanoparticles of hydrocarbon compounds and deposit on the surface at the flux condition of 1.77 × 1022 m−2·s−1. Under the irradiation of hydrogen plasma loaded with negative bias, the surface morphology of the matrix carbon is changed dramatically. Moreover, the energy dependence of mass loss does not increase in proportion to the increase of hydrogen–plasma energy, but reaches a peak around 20 V negative bias voltage. Based on the analysis of different samples, it can be concluded that the enhancement of energy could make a contribution to chemical erosion and enlarge the size of pores existing on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.