Abstract
The present study investigated the potential role of extracellular signal-regulated kinase (ERK) in uterine artery contraction and tested the hypothesis that pregnancy upregulated ERK-mediated function in the uterine artery. Isometric tension in response to phenylephrine (PE), serotonin (5-HT), phorbol 12,13-dibutyrate (PDBu), and KCl was measured in the ring preparation of uterine arteries obtained from nonpregnant and near-term (140 days gestation) pregnant sheep. Inhibiting ERK activation with PD-98059 did not change the KCl-evoked contraction but significantly inhibited the contraction to 5-HT in both nonpregnant and pregnant uterine arteries. PD-98059 did not affect PE-induced contraction in the uterine arteries of nonpregnant sheep but significantly decreased it in the uterine arteries of pregnant sheep. In accordance, PE stimulated activation of ERK in uterine arteries of pregnant sheep, which was blocked by PD-98059. PD-98059-mediated inhibition of the PE-induced contraction was associated with a decrease in both intracellular Ca(2+) concentration and Ca(2+) sensitivity of contractile proteins in the uterine arteries of pregnant sheep. PDBu-mediated contraction was significantly less in pregnant than in nonpregnant uterine arteries. PD-98059 had no effect on PDBu-induced contraction in nonpregnant but significantly increased it in pregnant uterine arteries. In addition, PD-98059 significantly enhanced PDBu-stimulated protein kinase C activity. The results indicate that ERK plays an important role in the regulation of uterine artery contractility, and its effect is agonist dependent. More importantly, pregnancy selectively enhances the role of ERK in alpha(1)-adrenoceptor-mediated contractions and its effect in suppressing protein kinase C-mediated contraction in the uterine artery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.