Abstract

Shuichi Nos\'e opened up a new world of atomistic simulation in 1984. He formulated a Hamiltonian tailored to generate Gibbs' canonical distribution dynamically. This clever idea bridged the gap between microcanonical molecular dynamics and canonical statistical mechanics. Until then the canonical distribution was explored with Monte Carlo sampling. Nos\'e's dynamical Hamiltonian bridge requires the "ergodic" support of a space-filling structure in order to reproduce the entire distribution. For sufficiently small systems, such as the harmonic oscillator, Nos\'e's dynamical approach failed to agree with Gibbs' sampling and instead showed a complex structure, partitioned into a chaotic sea, islands, and chains of islands, that is familiar textbook fare from investigations of Hamiltonian chaos. In trying to enhance small-system ergodicity several more complicated "thermostated" equations of motion were developed. All were consistent with the canonical Gaussian distribution for the oscillator coordinate and momentum. The ergodicity of the various approaches has undergone several investigations, with somewhat inconclusive ( contradictory ) results. Here we illustrate several ways to test ergodicity and challenge the reader to find even more convincing algorithms or an entirely new approach to this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.