Abstract

We explore the mechanism responsible for the ergodicity breaking in systems with long-range forces. In thermodynamic limit such systems do not evolve to the Boltzmann-Gibbs equilibrium, but become trapped in an out-of-equilibrium quasi-stationary-state. Nevertheless, we show that if the initial distribution satisfies a specific constraint-a generalized virial condition-the quasistationary state is very close to ergodic and can be described by Lynden-Bell statistics. On the other hand, if the generalized virial condition is violated, parametric resonances are excited, leading to chaos and ergodicity breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.