Abstract
Let G = SL(n, ℝ) (or, more generally, let G be a connected, noncompact, simple Lie group). For any compact Lie group K, it is easy to find a compact manifold M, such that there is a volume-preserving, connection-preserving, ergodic action of G on some smooth, principal K-bundle P over M. Can M can be chosen independent of K? We show that if M = H/Λ is a homogeneous space, and the action of G on M is by translations, then P must also be a homogeneous space H′Λ′. Consequently, there is a strong restriction on the groups K that can arise over this particular M.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have