Abstract

The Paul Erdős and Andras Gyarfas conjecture states that every graph of minimum degree at least 3 contains a simple cycle whose length is a power of two. In this paper, we prove that the conjecture holds for Cayley graphs on generalized quaternion groups, dihedral groups, semidihedral groups and groups of order \(p^3\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.