Abstract
ERBIN and phosphoglucomutase 3 (PGM3) mutations both lead to rare primary atopic disorders characterized by allergic disease and connective tissue abnormalities, though each disorder has its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN mutations allow for enhanced TGFb signaling, and prevent STAT3 from negative-regulating TGFb signaling. This likely explains many elements of clinical overlap between disorders of STAT3 and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the atopic disease. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well understood, nor is the broad variability in disease penetrance and expressivity, though preliminary studies suggest an overlap with IL-6 receptor signaling defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.