Abstract

Non-volatile flip-flops (NVFFs) using power gating techniques promise to overcome the soaring leakage power consumption issue with the scaling of CMOS technology. Magnetic tunnel junction (MTJ) is a good candidate for constructing the NVFF thanks to its low power, high speed, good CMOS compatibility, etc. In this paper, we propose a novel magnetic NVFF based on an emerging memory device called NAND-SPIN. The data writing of NAND-SPIN is achieved by successively applying two unidirectional currents, which respectively generate the spin orbit torque (SOT) and spin transfer torque (STT) for erase and programming operations. This characteristic allows us to design an erase-hidden and drivability-improved magnetic NVFF. Furthermore, more design flexibility could be obtained since the backup operation of the proposed NVFF is not limited by the inherent slave latch. Simulation results show that our proposed NVFF achieves performance improvement in terms of power, delay and area, compared with conventional slave-latch-driven SOT-NVFF designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.