Abstract

Let X be the wonderful compactification of a complex symmetric space G/H of minimal rank. For a point x ∈ G, denote by Z the closure of BxH/H in X, where B is a Borel subgroup of G. The universal cover of G is denoted by [Formula: see text]. Given a [Formula: see text] equivariant vector bundle E on X, we prove that E is nef (respectively, ample) if and only if its restriction to Z is nef (respectively, ample). Similarly, E is trivial if and only if its restriction to Z is so.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.