Abstract

The reduced dynamical model of a two-junction quantum interference device is generalized to the case of time-varying externally applied fluxes with a d. c. component and an oscillating addendum whose frequency is comparable with the inverse of the characteristic time for flux dynamics within the superconducting system. From the resulting effective single-junction model for null inductance of the superconducting loop, it can be seen that the critical current of the device shows a dependence on the frequency and amplitude of the oscillating part of the applied flux. It can therefore be argued that the latter quantities can be considered as control parameters in the voltage versus applied flux curves of superconducting quantum interference devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.