Abstract

The equivalent linearization method (ELM) was extended to analyze the flutter system of an airfoil with multiple nonlinearities. By replacing the cubic plunging and pitching stiffnesses by equivalent quantities, linearized equations for the nonlinear system were deduced. According to the linearized equations, approximate solutions for limit cycle oscillations (LCOs) were obtained in good agreement with numerical results. The influences of the linear and cubic stiffnesses on LCOs were analyzed in detail. Reducing linear pitching stiffness leads to decreasing of the critical flutter speed. For linear plunging stiffness, the opposite is true. Also, it reveals that the bifurcation could be supercritical or subcritical, which is related to the ratio between the coefficient of cubic pitching stiffness and that of plunging one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.