Abstract

With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength and post-yield stiffness).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call