Abstract

The application of the metamaterial (MM) in wireless power transfer (WPT) system has received a great deal of attention in improving the transfer efficiency and reducing the leakage of electromagnetic field (EMF) in recent years. However, most of the analytical methods for MM-inspired WPT system are based on microwave technologies, such as negative refraction effect, magnetic dipole coupling model and magneto-inductive wave theory. In this study, the equivalent circuit model of the MM in the WPT system is analysed in detail. Two different types of MMs, Mu-Negative-Magnetic (MNM) and Mu-Near-Zero (MNZ), are constructed to verify this method. In particular, a tuning strategy by changing the distances between the drive (load) loop and internal coils is established to improve the power transfer efficiency for the WPT system with the MNM-MM. In addition, the MNZ-MM is described to cancel EMF leakage in the WPT systems by this method. Moreover, a series of practical experiments are carried out to prove the numerical analysis, which are well consistent with the theoretical solution employed by the Advanced Design System software. Finally, the combination of two types of MMs applied in the WPT system is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call