Abstract

In this work, we investigated the orders to which the Floquet-Magnus expansion (FME) and Fer expansion (FE) are equivalent or different for the three-level system. Specifically, we performed the third-order calculations of both approaches based on elegant integrations formalism. We present an important close relationship between the Floquet-Magnus and Fer expansions. As the propagator from the FME takes the form of the evolution operator, which removes the constraint of a stroboscopic observation, we appreciated the effects of time-evolution under Hamiltonians with different orders separately. Our work unifies and generalizes existing results of Floquet-Magnus and Fer approaches and delivers illustrations of novel springs that boost previous applications that are based on the classical information. Due to the lack of an unequivocal relationship between the FME and FE, some disagreements between the results produced by these theories will be found, especially in NMR experiments. Our results can find applications in the optimization of NMR spectroscopy, quantum computation, quantum optical control, and coherence in optics and might bear new awareness in fundamental perusals of quantum spin dynamics. This work is an important theoretical and numerical contribution in the general field of spin dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call