Abstract

We analyze fermions after an interaction quantum quench in one spatial dimension and study the growth of the steady state entanglement entropy density under either a spatial mode or particle bipartition. For integrable lattice models, we find excellent agreement between the increase of spatial and particle entanglement entropy, and for chaotic models, an examination of two further neighbor interaction strengths suggests similar correspondence. This result highlights the generality of the dynamical conversion of entanglement to thermodynamic entropy under time evolution that underlies our current framework of quantum statistical mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.