Abstract
In the context of characterizing the structure of quantum entanglement in many-body systems, we introduce the entanglement contour, a tool to identify which real-space degrees of freedom contribute, and how much, to the entanglement of a region A with the rest of the system B. The entanglement contour provides a complementary, more refined approach to characterizing entanglement than just considering the entanglement entropy between A and B, with several concrete advantages. We illustrate this in the context of ground states and quantum quenches in fermionic quadratic systems. For instance, in a quantum critical system in D = 1 spatial dimensions, the entanglement contour allows us to determine the central charge of the underlying conformal field theory from just a single partition of the system into regions A and B (using the entanglement entropy for the same task requires considering several partitions). In D ⩾ 2 dimensions, the entanglement contour can distinguish between gapped and gapless phases that obey the same boundary law for entanglement entropy. During a local or global quantum quench, the time-dependent contour provides a detailed account of the dynamics of entanglement, including propagating entanglement waves, which offers a microscopic explanation of the behavior of the entanglement entropy as a function of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.