Abstract

Two-dimensional (2D) infrared (IR) spectra are commonly interpreted using a quantum diagrammatic expansion that describes the changes to the density matrix of quantum systems in response to light-matter interactions. Although classical response functions (based on Newtonian dynamics) have shown promise in computational 2D IR modeling studies, a simple diagrammatic description has so far been lacking. Recently, we introduced a diagrammatic representation for the 2D IR response functions of a single, weakly anharmonic oscillator and showed that the classical and quantum 2D IR response functions for this system are identical. Here, we extend this result to systems with an arbitrary number of bilinearly coupled, weakly anharmonic oscillators. As in the single-oscillator case, quantum and classical response functions are found to be identical in the weakly anharmonic limit or, in experimental terms, when the anharmonicity is small relative to the optical linewidth. The final form of the weakly anharmonic response function is surprisingly simple and offers potential computational advantages for application to large, multi-oscillator systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call