Abstract

Time-divergence in linear and nonlinear classical response functions can be removed by taking a phase-space average within the quantized uncertainty volume O(hn) around the microcanonical energy surface. For a quasiperiodic system, the replacement of the microcanonical distribution density in the classical response function with the quantized uniform distribution density results in agreement of quantum and classical expressions through Heisenberg's correspondence principle: each matrix element (u/alpha(t)/v) corresponds to the (u-v)th Fourier component of alpha(t) evaluated along the classical trajectory with mean action (Ju+Jv)/2. Numerical calculations for one- and two-dimensional systems show good agreement between quantum and classical results. The generalization to the case of N degrees of freedom is made. Thus, phase-space averaging within the quantized uncertainty volume provides a useful way to establish the classical-quantum correspondence for the linear and nonlinear response functions of a quasiperiodic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call