Abstract
The problem of transforming nonlinear control systems into input-output prime forms is dealt with, using state space, static state feedback, and also output space transformations. Necessary and sufficient geometric conditions for the solvability of this problem are obtained. The results obtained generalize well-known results both on feedback linearization as well as input-output decoupling of nonlinear systems. It turns out that, from a computational point of view, the output space transformation is the crucial step, that is performed by constructing rectifying coordinates for a nested sequence of distributions on the output manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.