Abstract
The algebraic formalism developed in this paper unifies the study of the accessibility problem and various notions of feedback linearizability for discrete-time nonlinear systems. The accessibility problem for nonlinear discrete-time systems is shown to be easy to tackle by means of standard linear algebraic tools, whereas this is not the case for nonlinear continuous-time systems, in which case the most suitable approach is provided by differential geometry. The feedback linearization problem for discrete-time systems is recasted through the language of differential forms. In the event that a system is not feedback linearizable, the largest feedback linearizable subsystem is characterized within the same formalism using the notion of derived flag of a Pfaffian system. A discrete-time system may be linearizable by dynamic state feedback, though it is not linearizable by static state feedback. Necessary and sufficient conditions are given for the existence of a so-called linearizing output, which in turn is a sufficient condition for dynamic state feedback linearizability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.