Abstract
Max-product belief propagation is a local, iterative algorithm find the mode/MAP estimate of a probability distribution. While it has been successfully employed in a wide variety of applications, there are relatively few theoretical guarantees of convergence and correctness for general loopy graphs that may have many short cycles. Of these, even fewer provide exact necessary and sufficient characterizations. In this paper we investigate the problem of using max-product to find the maximum weight matching in an arbitrary graph with edge weights. This is done by first constructing a probability distribution whose mode corresponds to the optimal matching, and then running max-product. Weighted matching can also be posed as an integer program, for which there is an LP relaxation. This relaxation is not always tight. In this paper we show that 1) If the LP relaxation is tight, then max-product always converges, and that too to the correct answer. 2) If the LP relaxation is loose, then max-product does not converge. This provides an exact, data-dependent characterization of max-product performance, and a precise connection to LP relaxation, which is a well-studied optimization technique. Also, since LP relaxation is known to be tight for bipartite graphs, our results generalize other recent results on using max-product to find weighted matching in bipartite graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.