Abstract

Two symmetric fractional factorial designs with qualitative and quantitative factors are equivalent if the design matrix of one can be obtained from the design matrix of the other by row and column permutations, relabeling of the levels of the qualitative factors and reversal of the levels of the quantitative factors. In this paper, necessary and sufficient methods of determining equivalence of any two symmetric designs with both types of factors are given. An algorithm used to check equivalence or non-equivalence is evaluated. If two designs are equivalent the algorithm gives a set of permutations which map one design to the other. Fast screening methods for non-equivalence are considered. Extensions of results to asymmetric fractional factorial designs with qualitative and quantitative factors are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.