Abstract

We enumerate nonisomorphic lattice-square designs yielded by a conventional construction. Constructed designs are specified by words composed from finite-field elements. These words are permuted by the isomorphism group in question. The latter group contains a direct-product subgroup, acting, respectively, upon the positions and identities of the finite-field elements. We review enumeration theory for such direct-product groups. This subgroup is a direct product of a hyperoctahedral and a dihedral group, with the orbits of the hyperoctahedral group, acting on the positions of the field elements, interpretable as perfect matchings. Thus, the enumeration of dihedral equivalence classes of perfect matchings provides an upper bound on the number of nonisomorphic, constructed designs. The full isomorphism group also contains non-direct-product elements, and the isomorphism classes are enumerated using Burnside's Lemma: counting the number of orbits of a normal subgroup fixed by the quotient group. This approach is applied to constructed lattice-square designs of odd, prime-power order ⩽13.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.