Abstract

Disassembly sequence planning (DSP) is a key approach for optimizing various industrial equipment-maintenance processes. Finding fast and effective DSP solutions plays an important role in improving maintenance efficiency and quality. However, when disassembling industrial equipment, there are many uncertainties that can have a detrimental impact on the disassembly and subsequent maintenance work. Therefore, this paper proposes a multi-objective DSP problem in an uncertain environment that addresses the uncertainties in the disassembly process through stochastic planning, with the objectives of minimizing disassembly time and enhancing responsiveness to priority maintenance components. Due to the complexity of the problem, an improved peafowl optimization algorithm (IPOA) is proposed for efficient problem-solving. The algorithm is specifically designed and incorporates four customized optimization mechanisms: peafowls’ courtship behavior, the adaptive behavior of female peafowls in proximity, the adaptive search behavior of peafowl chicks, and interactive behavior among male peafowls. These mechanisms enable effective search for optimal or near-optimal solutions. Through comparisons with a real-world industrial case and other advanced algorithms, the superiority of the IPOA in solving DSP problems is demonstrated. This research contributes to improving maintenance efficiency and quality, bringing positive impacts to industrial equipment maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call