Abstract

The agents of a distributed adaptive system perceive the current state of their environment and make decisions which action to perform. The actions are both reactive and proactive. Reactivity can be supported by the availability of real-time data and proactivity can be supported by anticipatory techniques. Recent investigations proved that if the agents use selfish strategy, then in some situations sometimes the system maybe worst off with real-time data than without real-time data, even if anticipatory techniques are applied to predict the future state of the environment. This study investigates that version of the Braess paradox, where each subsequent agent of the flow may select a different route, using real-time data and anticipatory techniques. The authors contribute to the state-of-the-art by proving that the traffic distribution in this Braess paradox approximates the Nash equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.