Abstract
The incomplete nonextensive statistics in the canonical and microcanonical ensembles is explored in the general case and in a particular case for the ideal gas. By exact analytical results for the ideal gas it is shown that taking the thermodynamic limit, with z=q/(1−q) being an extensive variable of state, the incomplete nonextensive statistics satisfies the requirements of equilibrium thermodynamics. The thermodynamical potential of the statistical ensemble is a homogeneous function of the first degree of the extensive variables of state. In this case, the incomplete nonextensive statistics is equivalent to the usual Tsallis statistics. If z is an intensive variable of state, i.e. the entropic index q is a universal constant, the requirements of the equilibrium thermodynamics are violated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.