Abstract

The conformational cis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that the cis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing the cis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on the cis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L- or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of the cis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bond undergoing the cis/trans isomerisation moves the equilibrium to a significant amount of the cis form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.