Abstract

A chemical-hydrodynamic model of laser induced plasma is developed to study a process of deposition of titanium oxides from titanium laser induced plasma to the titanium target surface. The model is relevant to texturing and coating of titanium bone implants that is done by scanning the ablation laser across implant surfaces. Such the procedure improves the biocompatibility and durability of the implants. The model considers plasma chemical reactions, formation of condensed species inside the plasma plume, and deposition and accumulation of these species on the ablation surface. A chemical part of the model is based on minimization of Gibbs free energy of the chemical system; it is used to calculate the chemical composition of the plasma. A hydrodynamic part uses the 2D fluid-dynamic equations that model a 3D axisymmetric plasma plume and assumes the mass and energy exchange between the plasma and the surface. The initial parameters for the model are inferred from experiment. The model shows that condensed titanium oxides, mostly TiO2, form in a peripheral plasma zone and gradually adhere to the surface during the plasma plume evolution. The model predicts the major component and thickness of the deposit and can be applied for the optimization of experiments aimed at surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call