Abstract

The study of the equilibrium and stability of spinning ellipsoidal fluid bodies with gravity began with Newton in 1687, and continues to the present day. However, no smaller bodies of the Solar System are fluid. Here I model those bodies as elastic–plastic solids using a cohesionless Mohr–Coulomb yield envelope characterized by an angle of friction. This study began in Holsapple 2001. Here new closed-form algebraic formulas for the spin limits of ellipsoidal shapes are derived using an energy method. The fluid results of Maclaurin and Jacobi are again recovered as special cases. I then consider the stability of those equilibrium states. For elastic–plastic solids the common methods cannot be used, because the constitutive equations lack sufficient smoothness at the limiting plastic states. Therefore, I propose and study a new measure of the stability of dynamic processes in general bodies. An energy-based approach is introduced which is shown to include stability approaches used in the statics of nonlinear elastic and elastic–plastic bodies, spectral definitions and the Liapunov methods used for finite-dimensional dynamical systems. The method is applied to spinning, solid, strained bodies. In contrast to the special fluid case, it is found that the strain energy term of solid materials generally induces stability of all equilibrium shapes, except for two possible cases. First, strain softening in the elastic–plastic law can result in instability at the plastic limit spin. Second, a loss of shear stiffness can give unstable states at specific spins less than the limit equilibrium spins. In the latter case, a solid spinning ellipsoidal body without elastic shear stiffness can spin no faster than with a period of about 3.7 hr, else it will fail by shearing deformations. That is distinctly slower than the oft-quoted limit of 2.1 hr at which material would be flung off the equator by tensile forces. However, the final conclusion is that neither cohesion nor tensile strength is required for the shapes and spins of almost all of the larger observed asteroids: we cannot rule out rubble-pile structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call