Abstract
Abstract Complex fragment emission ( Z > 2) has been studied in the reactions of 50, 80, and 100 MeV/u 139 La + 12 C. Charge, angle, and energy distributions were measured inclusively and in coincidence with other complex fragments, and were used to extract source rapidities, velocity distributions, and cross sections. The binary signature of the coincidence events and the sharpness of the velocity distributions illustrate the primarily 2-body nature of these reactions. Calculations based on statistical compound nucleus decay have been compared with the experimental data. The emission velocities, angular distributions, and absolute cross sections of fragments of 20 ⩽ Z ⩽ 35 at 50 MeV/u, 19 ⩽ Z ⩽ 28 at 80 MeV/u, and 17 ⩽ Z ⩽ 21 at 100 MeV/u are consistent with the binary decay of compound nuclei formed in incomplete fusion reactions in which the 139 La projectile picks up about one-half of the 12 C target. At 80 and 100 MeV/u, statistical model calculations are also able to reproduce the isotropic portion of the cross section for lighter and heavier fragments. However, a significant fraction of the total cross section for these fragments is due to non-equilibrium emission. Although the emission process is still mainly binary, and the relative velocity between the fragments is determined by their mutual Coulomb repulsion, the anisotropic angular distributions and the magnitudes of the absolute yields are incompatible with standard compound-nucleus statistical decay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.