Abstract

The adsorption of polyvinylpyrrolidone (PVP) by the thermoregulating microcapsules has been studied. The mass ratio of PVP has been changed from 1 to 20, with respect to the lowest amount of PVP value (4.08 g). The results confirmed that a large amount of PVP was adsorbed by the polymeric shell. Experimental data were perfectly fitted by Langmuir model, obtaining at a confidence level of 95% values of 192.9 ± 0.4 g/kg and 0.18 ± 0.11 m3/kg for the maximum adsorption capacity and the equilibrium constant, respectively. It was found that utilizing PVP, at a concentration of 5.03 wt% of the total mass provided optimum conditions for synthesizing thermoregulating microcapsules containing Rubitherm®RT27 from poly(styrene-divinylbenzene) (P(St-DVB)), with the best thermal and physical properties. Finally, the robustness of the process was checked at a large scale by using a reactor that maintains geometrical similarities with that used at laboratory scale. The thermal properties, the encapsulation efficiency, and the microcapsule yield were similar, but at pilot plant scale, narrower particle size distributions were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.