Abstract

We study graphical games where the payoff function of each player satisfies one of four types of symmetry in the actions of his neighbors. We establish that deciding the existence of a pure Nash equilibrium is NP-hard in general for all four types. Using a characterization of games with pure equilibria in terms of even cycles in the neighborhood graph, as well as a connection to a generalized satisfiability problem, we identify tractable subclasses of the games satisfying the most restrictive type of symmetry. Hardness for a different subclass is obtained via a satisfiability problem that remains NP-hard in the presence of a matching, a result that may be of independent interest. Finally, games with symmetries of two of the four types are shown to possess a symmetric mixed equilibrium which can be computed in polynomial time. We thus obtain a class of games where the pure equilibrium problem is computationally harder than the mixed equilibrium problem, unless P=NP.KeywordsNash EquilibriumPolynomial TimeEquilibrium ProblemNeighborhood SizeSymmetric EquilibriumThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.