Abstract

In this paper, we study an analytic curve $ \varphi: I = [a, b]\rightarrow \mathrm{M}(m\times n, \mathbb{R}) $ in the space of $ m $ by $ n $ real matrices, and show that if $ \varphi $ satisfies certain geometric condition, then for almost every point on the curve, the Diophantine approximation given by Dirichlet's Theorem can not be improved. To do this, we embed the curve into a homogeneous space $ G/\Gamma $, and prove that under the action of some expanding diagonal subgroup $ A = \{a(t): t \in \mathbb{R}\} $, the translates of the curve tend to be equidistributed in $ G/\Gamma $, as $ t \rightarrow +\infty $. The proof relies on the linearization technique and representation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call