Abstract

A classical result of MacMahon shows that the length function and the major index are equi-distributed over the symmetric group. Foata and Schützenberger gave a remarkable refinement and proved that these parameters are equi-distributed over inverse descent classes, implying bivariate equi-distribution identities. Type B analogues of these results, refinements and consequences are given in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.