Abstract
We derive multivariate generating functions that count signed permutations by various statistics, using the hyperoactahedral generalization of methods of Garsia and Gessel. We also derive the distributions over inverse descent classes of signed permutations for two of these statistics individually (the major index and inversion number). These results show that, in contrast to the case for (unsigned) permutations, these two statistics are not generally equidistributed. We also discuss applications to statistics on the wreath product C k ≀ S n of a cyclic group with the symmetric group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.