Abstract
We present results of a first study of equation of state in finite-temperature QCD with two flavors of Wilson-type quarks. Simulations are made on lattices with temporal size $N_t=4$ and 6, using an RG-improved action for the gluon sector and a meanfield-improved clover action for the quark sector. The lines of constant physics corresponding to fixed values of the ratio $m_{\rm PS}/m_{\rm V}$ of the pseudo-scalar to vector meson masses at zero temperature are determined, and the beta functions which describe the renormalization-group flow along these lines are calculated. Using these results, the energy density and the pressure are calculated as functions of temperature along the lines of constant physics in the range $m_{\rm PS}/m_{\rm V} = 0.65$--0.95. The quark mass dependence in the equation of state is found to be small for $m_{\rm PS}/m_{\rm V} \simlt 0.8$. Comparison of results for $N_t=4$ and $N_t=6$ lattices show significant scaling violation present in the $N_t=4$ results. At high temperatures the results for $N_t=6$ are quite close to the continuum Stefan-Boltzmann limit, suggesting the possibility of a precise continuum extrapolation of thermodynamic quantities from simulations at $N_t\simgt 6$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.