Abstract

We construct the equation of state (EoS) for neutron stars explicitly including hyperons and quarks. Using the quark-meson coupling model with relativistic Hartree-Fock approximation, the EoS for hadronic matter is derived by taking into account the strange ($\sigma^{\ast}$ and $\phi$) mesons as well as the light non-strange ($\sigma$, $\omega$, $\vec{\pi}$ and $\vec{\rho}$) mesons. Relevant coupling constants are determined to reproduce the experimental data of nuclear matter and hypernuclei in SU(3) flavor symmetry. For quark matter, we employ the MIT bag model with one-gluon-exchange interaction, and Gibbs criteria for chemical equilibrium in the phase transition from hadrons to quarks. We find that the strange vector ($\phi$) meson and the Fock contribution make the hadronic EoS stiff, and that the maximum mass of a neutron star can be consistent with the observed mass of heavy neutron stars even if the coexistence of hadrons and quarks takes place in the core. However, in the present calculation the transition to pure quark matter does not occur in stable neutron stars. Furthermore, the lower bound of the critical chemical potential of the quark-hadron transition at zero temperature turns out to be around 1.5 GeV in order to be consistent with the recent observed neutron star data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.