Abstract

Considering the mass constraint from the resent pulsar observations, we study the properties of neutron stars including hyperons and quarks explicitly. Using the chiral quark-meson coupling model with relativistic Hartree-Fock approximation, the equation of state (EoS) for hadronic matter is calculated by taking into account the strange ($\sigma^{\ast}$ and $\phi$) mesons as well as the light non-strange ($\sigma$, $\omega$, $\vec{\rho}$, and $\vec{\pi}$) mesons in SU(3) flavor symmetry. On the other hand, the EoS for quark matter is constructed with the simple MIT bag or the flavor-SU(3) Nambu-Jona-Lasinio model, and we investigate the effect of the hadron-quark coexistence on the neutron-star properties, imposing smooth crossover or Gibbs criterion for chemical equilibrium. The mass-radius relation of a neutron star, as well as physical quantities such as EoSs, particle fractions, and the speed of sound in matter are presented. We find that, in order to prevent the quark appearance at very low densities, the stiff hadronic EoS should be required under both of the hadron-quark crossover and the first-order phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.