Abstract

Neste artigo, abordou-se a equação do calor bidimensional com condições de contorno de Neumann, a qual descreve a difusão do calor ao longo de um sólido. Esta equação tem grande importância em projetos que envolvem sistemas térmicos. Fez-se a dedução algébrica da equação, e então, foram obtidas as soluções analítica e numérica. A solução analítica foi obtida pelo método da separação de variáveis. Por outro lado, para obter a solução numérica, aplicou-se o Método das Diferenças Finitas, que foi utilizado inicialmente por Leonhard Euler (1707 – 1783) e é largamente utilizado em simulações numéricas. Os resultados alcançados, tanto numérico quanto analítico, foram implementados por meio da linguagem de programação Python. Por fim, faz-se a análise da solução por meio de gráficos 2D e avaliação do erro relativo. Conclui-se que a solução numérica é uma boa aproximação para a solução analítica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.