Abstract

Orthogonal signal-division multiplexing (OSDM) has recently emerged as a promising alternative to orthogonal frequency division multiplexing (OFDM) for high-rate wireless communications. Although providing more flexibility in system design, it suffers from a special interference structure, namely inter-vector interference (IVI), when channel time variations are present. In this paper, we first derive the general OSDM signal model over time-varying channels, and then show that a time-domain window can be used to enhance the diagonal-block-banded (DBB) approximation of the channel matrix in a transformed domain. Furthermore, based on the DBB matrix enhancement, a low-complexity OSDM equalization algorithm is designed. Simulation results indicate that the proposed equalizer has significant performance advantages over that using the direct DBB approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call