Abstract

Generator scheduling remains an intriguing issue within the energy industry. It relates to the optimization of production costs, where system operators must select the optimal combination of available resources to minimize production costs. This paper proposes an enhancement to the Equal Incremental Cost (EIC) Method using Adjustable Gamma Control (AGC) in generator scheduling. Iterations begin with an initial lambda value, then gradually increase with the application of the factor until power demand is met. A variable of 10% is used as an adjustment step in the optimization method. The proposed method is capable of achieving convergence with 100% accuracy, where the power generated by all generators precisely matches the load demand (2,650 MW), at a cost of USD 32,289.03. EIC-AGC ranks second-best after VLIM, albeit with the consequence of consuming 195 seconds. This method is expected to have a significant impact on designing highly accurate economic dispatch techniques. Thus, generator scheduling will lead to a reduction in operational costs compared to current practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.