Abstract

An embedding $\varphi \colon (M_1, \omega_1) \to (M_2, \omega_2)$ (of symplectic manifolds of the same dimension) is called $\epsilon$-symplectic if the difference $\varphi^* \omega_2 - \omega_1$ is $\epsilon$-small with respect to a fixed Riemannian metric on $M_1$. We prove that if a sequence of $\epsilon$-symplectic embeddings converges uniformly (on compact subsets) to another embedding, then the limit is $E$-symplectic, where the number $E$ depends only on $\epsilon$ and $E (\epsilon) \to 0$ as $\epsilon \to 0$. This generalizes $C^0$-rigidity of symplectic embeddings, and answers a question in topological quantum computing by Michael Freedman. As in the symplectic case, this rigidity theorem can be deduced from the existence and properties of symplectic capacities. An $\epsilon$-symplectic embedding preserves capacity up to an $\epsilon$-small error, and linear $\epsilon$-symplectic maps can be characterized by the property that they preserve the symplectic spectrum of ellipsoids (centered at the origin) up to an error that is $\epsilon$-small. We sketch an alternative proof using the shape invariant, which gives rise to an analogous characterization and rigidity theorem for $\epsilon$-contact embeddings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call