Abstract
The heme axial ligands of bd-type ubiquinol oxidase of Escherichia coli were studied by EPR and optical spectroscopies using nitric oxide (NO) as a monitoring probe. We found that NO bound to ferrous heme d of the air-oxidized and fully reduced enzymes with very high affinity and to ferrous heme b595 of the fully reduced enzyme with low affinity. EPR spectrum of the 14NO complex of the reduced enzyme exhibited an axially symmetric signal with g-values at g = 2.041 and g = 1.993 and a clear triplet of triplet (or a triplet of doublet for the 15NO complex) superhyperfine structure originating from a nitrogenous proximal ligand trans to NO was observed. This EPR species was assigned to the ferrous heme d-NO complex. This suggests that the proximal axial ligand of heme d is a histidine residue in an anomalous condition or other nitrogenous amino acid residue. Furthermore, the EPR line shape of the ferrous heme d-NO was slightly influenced by the oxidation state of the heme b595. This indicates that heme d exists in close proximity to heme b595 forming a binuclear center. Another axially symmetric EPR signal with g-values at g(parallel) = 2.108 and g(perpendicular) = 2.020 appeared after prolonged incubation of the reduced enzyme with NO and was attributed to the ferrous heme b595-NO complex.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have