Abstract

Matrix EPR studies and quantum chemical calculations have been used to characterize the consecutive H-atom shifts undergone by the nitrogen-centered parent radical cations of propargylamine (1b*+) and allylamine (5*+) on thermal or photoinduced activation. The radical cation rearrangements of these unsaturated parent amines occur initially by a 1,2 H-atom shift from C1 to C2 with pi-bond formation at the positively charged nitrogen; this is followed by a consecutive reaction involving a second H-atom shift from C2 to C3. Thus, exposure to red light (lambda > 650 nm) converts 1b*+ to the vinyl-type distonic radical cation 2*+ which in turn is transformed on further photolysis with blue-green light (lambda approximately 400-600 nm) to the allene-type heteroallylic radical cation 3*+. Calculations show that the energy ordering is 1b*+ > 2*+ > 3*+, so that the consecutive H-atom shifts are driven by the formation of more stable isomers. Similarly, the parent radical cation of allylamine 5*+ undergoes a spontaneous 1,2-hydrogen atom shift from C1 to C2 at 77 K with a t1/2 of approximately 1 h to yield the distonic alkyl-type iminopropyl radical cation 6*+; this thermal reaction is attributed largely to quantum tunneling, and the rate is enhanced on concomitant photobleaching with visible light. Subsequent exposure to UV light (lambda approximately 350-400 nm) converts 6*+ by a 2,3 H-shift to the 1-aminopropene radical cation 7*+, which is confirmed to be the lowest-energy isomer derived from the ionization of either allylamine or cyclopropylamine. Although the parent radical cations of N, N-dimethylallylamine (9*+) and N-methylallylamine (11*+) are both stabilized by the electron-donating character of the methyl group(s), the photobleaching of 9*+ leads to the remarkable formation of the cyclic 1-methylpyrrolidine radical cation 10*+. The first step of this transformation now involves the migration of a hydrogen atom to C2 of the allyl group from one of the methyl groups (rather than from C1); the reaction is then completed by the cyclization of the generated MeN + (=CH2) CH2CH2CH2* distonic radical cation, possibly in a concerted overall process. In contrast to the ubiquitous H-atom transfer from carbon to nitrogen that occurs in the parent radical cations of saturated amines, the alternate rearrangements of either 1b*+ or 5*+ to an ammonium-type radical cation by a hypothetical H-atom shift from C1 to the ionized NH2 group are not observed. This is in line with calculations showing that the thermal barrier for this transformation is much higher (approximately 120 kJ mol-1) than those for the conversion of 1b*+ --> 2*+ and 5*+--> 6*+ (approximately 40-60 kJ mol-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call