Abstract

The ligand-binding properties of the unique heme c(n) of the cyt b(6)f complex, which is bridged to the heme b(n), are studied with EPR spectroscopy. Despite an open coordination site, high-spin heme c(n) in the oxidized state does not bind typical heme ligands such as cyanide, indicating their inaccessibility to the heme. In the reduced state, heme c(n) binds the O(2) surrogate NO to give a five-coordinate S = (1)/(2) [FeNO](7) complex, indicating that the site is accessible in the reduced state of the protein. The binding of NO implies that the heme c(n) can also bind O(2). Given the significant number of experimentally documented pathways for which a plastoquinol oxidase has been proposed, but the actual oxidase not identified, it is proposed that one of the functions of heme c(n), the only prosthetic group in the electron transport chain with oxidase-like properties, is the putative oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.