Abstract

The LaAl11O18:Mn2+ powder phosphor has been prepared using a self-propagating synthesis. Formation and homogeneity of the LaAl11O18:Mn2+ phosphor has been verified by X-ray diffraction and energy dispersive X-ray analysis respectively. The EPR spectra of Mn2+ ions exhibit resonance signals with effective g values at g≈4.8 and g≈1.978. The signal at g≈1.978 exhibits six-line hyperfine structure and is due to Mn2+ ions in an environment close to tetrahedral symmetry, whereas the resonance at g≈4.8 is attributed to the rhombic surroundings of the Mn2+ ions. It is observed that the number of spins participating in resonance for g≈1.978 increases with decreasing temperature obeying the Boltzmann law. Upon 451nm excitation, the photoluminescence spectrum exhibits a green emission peak at 514nm due to 4T1 (G)→6A1 (S) transition of Mn2+ ions. The crystal field parameter Dq and Racah inter-electronic repulsion parameters B and C have been evaluated from the excitation spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.