Abstract

AbstractThis study presents an innovative technique for recycling leftover epoxy composites reinforced with natural fillers. The waste epoxy composites were successfully ground into a 75–150 μm fine powder. With the aid of extrusion injection molding, this powder was subsequently utilized to create polypropylene matrix‐based polymer composites with variable filler loadings ranging from 10% to 30%. The mechanical, thermal, thermomechanical, and morphological properties of the developed composites were assessed. The greatest tensile strength of the polypropylene composites produced with 10% filler loading was found to be 24.15 MPa. The addition of epoxy composite filler increased the thermal stability. During morphological investigations, it was discovered that pits, voids, and filler agglomerations predominated the fractured surface of the developed composites. Overall, it can be concluded that there is a lot of promise for value‐added recycling of thermosetting resin‐based composites using this low‐cost, high‐efficiency, and ecologically benign process, which would lessen the environmental impact of plastic.Highlights Novel polypropylene composites using epoxy composite dust was developed. Mechanical, thermal, thermomechanical, and morphological studies were performed. Toys, tableware, mementos, and furniture can be the potential applications. The developed composites can reduce plastic load on the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.