Abstract

Bee venom phospholipase A2 (PLA) is the major allergen in bee sting allergy. It displays three peptide and a glycopeptide T cell epitopes, which are recognized by both allergic and non-allergic bee venom sensitized subjects. In this study PLA- and PLA epitope-specific T cell and cytokine responses in PBMC of bee sting allergic patients were investigated before and after 2 mo of rush immunotherapy with whole bee venom. After successful immunotherapy, PLA and T cell epitope peptide-specific T cell proliferation was suppressed. In addition the PLA- and peptide-induced secretion of type 2 (IL-4, IL-5, and IL-13), as well as type 1 (IL-2 and IFN-gamma) cytokines were abolished, whereas tetanus toxoid-induced cytokine production and proliferation remained unchanged. By culturing PBMC with Ag in the presence of IL-2 or IL-15 the specifically tolerized T cell response could be restored with respect to specific proliferation and secretion of the type 1 T cell cytokines, IL-2 and IFN-gamma. In contrast, IL-4, IL-5, and IL-13 remained suppressed. Treatment of tolerized T cells with IL-4 only partially restored proliferation and induced formation of distinct type 2 cytokine pattern. In spite of the allergen-specific tolerance in T cells, in vitro produced anti-PLA IgE and IgG4 Ab and their corresponding serum levels slightly increased during immunotherapy, while the PLA-specific IgE/IgG4 ratio changed in favor of IgG4. These findings indicate that bee venom immunotherapy induces a state of peripheral tolerance in allergen-specific T cells, but not in specific B cells. The state of T cell tolerance and cytokine pattern can be in vitro modulated by the cytokines IL-2, IL-4, and IL-15, suggesting the importance of microenvironmental cytokines leading to success or failure in immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call