Abstract

Acute myeloid leukemia (AML) is a malignant cancer characterized by abnormal differentiation of hematopoietic stem and progenitor cells (HSPCs). While chimeric antigen receptor T (CAR-T) cell immunotherapies target AML cells, they often induce severe on-target/off-tumor toxicity by attacking normal cells expressing the same antigen. Here, we used base editors (BEs) and a prime editor (PE) to modify the epitope of CD123 on HSPCs, protecting healthy cells from CAR-T-induced cytotoxicity while maintaining their normal function. Although BE effectively edits epitopes, complex bystander products are a concern. To enhance precision, we optimized prime editing, increasing the editing efficiency from 5.9% to 78.9% in HSPCs. Epitope-modified cells were resistant to CAR-T lysis while retaining normal differentiation and function. Furthermore, BE- or PE-edited HSPCs infused into humanized mice endowed myeloid lineages with selective resistance to CAR-T immunotherapy, demonstrating a proof-of-concept strategy for treating relapsed AML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.