Abstract

BackgroundAutoimmune response after the infection of SARS-COV-2 is evident as more cases of Guillain Barre syndrome and Kawasaki disease are diagnosed. In this study, we aim to investigate a possible mechanism of autoimmune lung injury. MethodsWe extracted the peptide sequences of surface proteins of the SARS-COV-2 from the NCBI data protein. We used Blastp to assess the homologous sequences between the human proteins in the UNIPROT database that are associated with respiratory distress. Then, we filtered the homologous sequences to those selectively expressed in the lung and homologous to surface viral proteins. We then assessed the epitope sequences for MHC-I and MHC-II using recommended settings and reference MHC in the IEDB database. ResultsHomeobox protein 2.1 (NKX2-1) and ATP-binding cassette sub-family A member 3 (ABCA3) showed homologous sequence to both surface glycoproteins and envelope proteins. The HLA-DR and HLA-DQ had a similar binding pattern to ABCA3 as surface glycoproteins and envelope proteins, respectively. Other HLA molecules that had a similar binding pattern to SARS-COV-2 as human proteins were HLA-A and HLA-DP. ConclusionOur study indicates that there is a possible autoimmune mechanism underlying the acute respiratory distress syndrome in SARS-COV-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call